skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Valenzuela, Lucas M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The discovery of quiescent, dark matter (DM)-deficient ultra-diffuse galaxies (UDGs) with overluminous globular clusters (GCs) has challenged galaxy formation models within the Lambda cold dark matter (ΛCDM) cosmological paradigm. Previously, such galaxies were only identified in the NGC 1052 group, raising the possibility that they are the result of unique, group-specific processes, and limiting their broader significance. The recent identification of FCC 224, a putative DM-deficient UDG on the outskirts of the Fornax Cluster, suggests that such galaxies are not confined to the NGC 1052 group but rather represent a broader phenomenon. We aim to investigate the DM content of FCC 224 and to explore its similarities to the DM-free dwarfs in the NGC 1052 group, DF2 and DF4, to determine whether or not it belongs to the same class of DM-deficient UDGs. We use high-resolution Keck Cosmic Web Imager (KCWI) spectroscopy to study the kinematics, stellar populations, and GC system of FCC 224, enabling direct comparisons with DF2 and DF4. We find that FCC 224 is also DM-deficient and exhibits a distinct set of traits shared with DF2 and DF4, including slow and prolate rotation, quiescence in low-density environments, coeval formation of stars and GCs, flat stellar population gradients, a top-heavy GC luminosity function, and monochromatic GCs. These shared characteristics signal the existence of a previously unrecognised class of DM-deficient dwarf galaxies. This diagnostic framework provides a means of identifying additional examples and raises new questions for galaxy formation models within ΛCDM cosmology. 
    more » « less
    Free, publicly-accessible full text available March 1, 2026